Given an array nums of n integers where n > 1, return an array output such that output[i] is equal to the product of all the elements of nums except nums[i].
1
2
3
4
| Example:
Input: [1,2,3,4]
Output: [24,12,8,6]
|
Constraint: It’s guaranteed that the product of the elements of any prefix or suffix of the array (including the whole array) fits in a 32 bit integer.
Note: Please solve it without division and in O(n).
Follow up:
Could you solve it with constant space complexity? (The output array does not count as extra space for the purpose of space complexity analysis.)
1
2
3
4
5
6
7
8
| Notes:
[a,b,c,d,e]
[bcde, acde, abed, abce, abcd]
[1, a, ab, abc, abcd]
[bcde, cde, de, e, 1]
|
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
| class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] leftProduct = new int[n];
int[] rightProduct = new int[n];
int[] result = new int[n];
leftProduct[0] = 1;
for (int i = 1; i < n; i++) {
leftProduct[i] = leftProduct[i - 1] * nums[i - 1];
}
rightProduct[n - 1] = 1;
for (int i = n - 1; i > 0; i--) {
rightProduct[i - 1] = rightProduct[i] * nums[i];
}
for (int i = 0; i < n; i++) {
result[i] = leftProduct[i] * rightProduct[i];
}
return result;
}
}
|
Solution 2021-11-21#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
| class Solution {
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] p1 = new int[n];
int[] p2 = new int[n];
Arrays.fill(p1, 1);
Arrays.fill(p2, 1);
for (int i = 1; i < n; i++) {
p1[i] = nums[i - 1];
p1[i] *= p1[i - 1];
}
for (int i = n - 1; i > 0; i--) {
p2[i - 1] = nums[i];
p2[i - 1] *= p2[i];
}
for (int i = 0; i < n; i++) {
nums[i] = p1[i] * p2[i];
}
return nums;
}
}
|
Solution 2022-01-24#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
| class Solution {
/*
Input: nums = [1,2,3,4]
Output: [24,12,8,6]
1*2*3*4, 1*3*4, 1*2*4, 1*2*3
[1, 1, 2, 3] = [ 1, 1, 2,6]
[2, 3, 4, 1] = [24,12, 4, 1]
*/
public int[] productExceptSelf(int[] nums) {
int n = nums.length;
int[] p1 = new int[n];
p1[0] = 1;
for (int i = 1; i < n; i++) {
p1[i] = nums[i - 1] * p1[i - 1];
}
int[] p2 = new int[n];
p2[n - 1] = 1;
for (int i = n - 2; i >= 0; i--) {
p2[i] = p2[i + 1] * nums[i + 1];
}
int[] p = new int[n];
for (int i = 0; i < n; i++) {
p[i] = p1[i] * p2[i];
}
return p;
}
}
|