Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand.
(i.e., [0,1,2,4,5,6,7] might become [4,5,6,7,0,1,2]).
You are given a target value to search. If found in the array return its index, otherwise return -1.
You may assume no duplicate exists in the array.
Your algorithm’s runtime complexity must be in the order of O(log n).
1
2
3
4
| Example 1:
Input: nums = [4,5,6,7,0,1,2], target = 0
Output: 4
|
1
2
3
4
| Example 2:
Input: nums = [4,5,6,7,0,1,2], target = 3
Output: -1
|
Notes: Firstly, we find the index where the numbers start growing, than do basic binary search.
Solution 1#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
| class Solution {
public int search(int[] nums, int target) {
if (nums.length == 0) {
return -1;
}
int n = nums.length;
int left = 0;
int right = n - 1;
// [4,5,6,7,0,1,2]
while (left < right) {
int mid = left + (right - left) / 2;
if (nums[mid] > nums[right]) {
left = mid + 1;
} else {
right = mid;
}
}
int start = left;
left = 0;
right = n - 1;
if (target >= nums[start] && target <= nums[right]) {
left = start;
} else {
right = start;
}
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
return mid;
}
if (nums[mid] < target) {
left = mid + 1;
} else {
right = mid - 1;
}
}
return -1;
}
}
|
Solution 01.06.2021#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
| class Solution {
public int search(int[] nums, int target) {
int n = nums.length;
int l = 0;
int r = n - 1;
while (l <= r) {
int mid = l + (r - l) / 2;
if (nums[mid] == target) {
return mid;
} else if (isInInterval(nums, target, l, mid)) {
r = mid;
} else {
l = mid + 1;
}
}
return -1;
}
boolean isInInterval(int[] nums , int t, int l, int r) {
// in sorted interval
if (nums[l] <= nums[r]) {
return t >= nums[l] && t <= nums[r];
} else {
// 4 5 6 .... 1 in shifed interval
return t >= nums[l] || t <= nums[r];
}
}
}
|