Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ≤ k ≤ BST’s total elements.
Example 1:
1
2
3
4
5
6
7
| Input: root = [3,1,4,null,2], k = 1
3
/ \
1 4
\
2
Output: 1
|
Example 2:
1
2
3
4
5
6
7
8
9
| Input: root = [5,3,6,2,4,null,null,1], k = 3
5
/ \
3 6
/ \
2 4
/
1
Output: 3
|
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
Solution:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
| /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int level = 0;
int answer = -1;
public void inorder(TreeNode node, int k) {
if (node == null) {
return;
}
inorder(node.left, k);
level++;
if (level == k) {
answer = node.val;
return;
}
inorder(node.right, k);
}
public int kthSmallest(TreeNode root, int k) {
inorder(root, k);
return answer;
}
}
|