You are given coins of different denominations and a total amount of money. Write a function to compute the number of combinations that make up that amount. You may assume that you have infinite number of each kind of coin.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| Example 1:
Input: amount = 5, coins = [1, 2, 5]
Output: 4
Explanation: there are four ways to make up the amount:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1
Example 2:
Input: amount = 3, coins = [2]
Output: 0
Explanation: the amount of 3 cannot be made up just with coins of 2.
Example 3:
Input: amount = 10, coins = [10]
Output: 1
|
Note:
You can assume that
- 0 <= amount <= 5000
- 1 <= coin <= 5000
- the number of coins is less than 500
- the answer is guaranteed to fit into signed 32-bit integer
Recursive Solution#
1
2
3
4
5
6
7
8
9
10
| class Solution {
public int change(int amount, int[] coins) {
return change(0, amount, coins);
}
int change(int k, int amount, int[] coins) {
if (amount == 0) return 1;
if (amount < 0 || k == coins.length) return 0;
return change(k, amount - coins[k], coins) + change(k + 1, amount, coins);
}
}
|
Recursive with Memo#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution {
public int change(int amount, int[] coins) {
int[][] dp = new int[coins.length][amount + 1];
for (int i = 0; i < coins.length; i++) {
Arrays.fill(dp[i], -1);
}
return change(0, amount, coins, dp);
}
int change(int k, int amount, int[] coins, int[][] dp) {
if (amount == 0) return 1;
if (amount < 0 || k == coins.length) return 0;
if (dp[k][amount] != -1) return dp[k][amount];
return dp[k][amount] = change(k, amount - coins[k], coins, dp) + change(k + 1, amount, coins, dp);
}
}
|
DP Solution#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| class Solution {
public int change(int amount, int[] coins) {
int[][] dp = new int[coins.length + 1][amount + 1];
for (int i = 0 ; i <= coins.length; i++) {
dp[i][0] = 1;
}
for (int i = 1; i <= coins.length; i++) {
for (int j = 1; j <= amount; j++) {
if (j >= coins[i-1]) {
dp[i][j] = dp[i][j - coins[i-1]] + dp[i-1][j];
} else {
dp[i][j] = dp[i-1][j];
}
}
}
return dp[coins.length][amount];
}
}
|
One Dimensionl DP#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
| class Solution {
public int change(int amount, int[] coins) {
int[] dp = new int[amount + 1];
dp[0] = 1;
for (int coin: coins) {
for (int i = coin; i < dp.length; i++) {
if (i - coin >= 0) {
dp[i] += dp[i - coin];
}
}
}
return dp[amount];
}
}
|