Given n, how many structurally unique BST’s (binary search trees) that store values 1 … n?
Example:
1
2
3
4
5
6
7
8
9
10
| Input: 3
Output: 5
Explanation:
Given n = 3, there are a total of 5 unique BST's:
1 3 3 2 1
\ / / / \ \
3 2 1 1 3 2
/ / \ \
2 1 2 3
|
Notes: Catalan’s numbers:
1
2
3
| C(0) = C(1) = 1
C(2) = C(1) * C(0) + C(0) * C(1)
C(3) = C(2) * C(1) + C(1) * C(1) + C(1) * C(2)
|
Solution:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
| class Solution {
public int numTrees(int n) {
int[] dp = new int[n + 1];
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; i++) {
for (int j = 0; j <= i - 1; j++) {
dp[i] += dp[j] * dp[i - j - 1];
}
}
System.out.println(Arrays.toString(dp));
return dp[n];
}
}
|