Given an unsorted array of integers, find the length of longest increasing subsequence.
1
2
3
4
5
| Example:
Input: [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
|
Note:
- There may be more than one LIS combination, it is only necessary for you to return the length.
- Your algorithm should run in O(n2) complexity.
Follow up: Could you improve it to O(n log n) time complexity?
Recursive O(2^n) Solution:#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| class Solution {
public int lengthOfLIS(int[] nums) {
return lengthOfLIS(nums, Integer.MIN_VALUE, 0);
}
int lengthOfLIS(int[] nums, int prev, int currpos) {
if (currpos == nums.length) {
return 0;
}
int taken = 0;
if (nums[currpos] > prev) {
taken = 1 + lengthOfLIS(nums, nums[currpos], currpos + 1);
}
int nottaken = lengthOfLIS(nums, prev, currpos + 1);
return Math.max(nottaken, taken);
}
}
|
Recursive O(n*n) Solution with Memoization:#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
| class Solution {
public int lengthOfLIS(int[] nums) {
int[][] memo = new int[nums.length + 1][nums.length];
for (int[] l: memo) {
Arrays.fill(l, -1);
}
return lengthOfLIS(nums, -1, 0, memo);
}
int lengthOfLIS(int[] nums, int prevpos, int currpos, int[][] memo) {
if (currpos == nums.length) {
return 0;
}
if (memo[prevpos + 1][currpos] >= 0) {
return memo[prevpos + 1][currpos];
}
int taken = 0;
if (prevpos < 0 || nums[currpos] > nums[prevpos]) {
taken = 1 + lengthOfLIS(nums, currpos, currpos + 1, memo);
}
int nottaken = lengthOfLIS(nums, prevpos, currpos + 1, memo);
memo[prevpos + 1][currpos] = Math.max(nottaken, taken);
return memo[prevpos + 1][currpos];
}
}
|
Solution:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
| class Solution {
public int lengthOfLIS(int[] nums) {
int n = nums.length;
if (n <= 1) {
return n;
}
int[] dp = new int[n];
Arrays.fill(dp, 1);
int ans = 1;
for (int i = 1; i < n; i++) {
for (int j = i - 1; j >=0; j--) {
if (nums[i] > nums[j]) {
dp[i] = Math.max(dp[i], dp[j] + 1);
}
ans = Math.max(ans, dp[i]);
}
}
System.out.println(Arrays.toString(dp));
return ans;
}
}
|
Solution 2021-11-26#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public int lengthOfLIS(int[] nums) {
int n = nums.length;
int[] len = new int[n];
Arrays.fill(len, 1);
int max = 1;
for (int i = 1; i < n; i++) {
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j]) {
len[i] = Math.max(len[i], len[j] + 1);
max = Math.max(len[i], max);
}
}
}
return max;
}
}
|