The Hamming distance between two integers is the number of positions at which the corresponding bits are different.
Given two integers x and y, calculate the Hamming distance.
Note:
0 ≤ x, y < 231.
1
2
3
4
5
6
7
8
9
10
11
| Example:
Input: x = 1, y = 4
Output: 2
Explanation:
1 (0 0 0 1)
4 (0 1 0 0)
↑ ↑
The above arrows point to positions where the corresponding bits are different.
|
Solution:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
| class Solution {
public int hammingDistance2(int x, int y) {
int result = 0;
while (x > 0 || y > 0) {
result += (x % 2) ^ (y % 2);
x >>=1;
y >>=1;
}
return result;
}
public int hammingDistance(int x, int y) {
return Integer.bitCount(x ^ y);
}
/*
1 (0 0 0 1)
4 (0 1 0 0)
*/
public int hammingDistance3(int x, int y) {
int count = 0;
while (x != 0 || y != 0) {
if ((x & 1) != (y & 1)) {
count++;
}
x = x >> 1;
y = y >> 1;
}
return count;
}
}
|