![https://leetcode.com/problems/redundant-connection/]

In this problem, a tree is an undirected graph that is connected and has no cycles.

The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, …, N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.

Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.

Example 1:

Input: [[1,2], [1,3], [2,3]] Output: [2,3] Explanation: The given undirected graph will be like this:

1
2
3
  1
 / \
2 - 3

Example 2:

Input: [[1,2], [2,3], [3,4], [1,4], [1,5]] Output: [1,4] Explanation: The given undirected graph will be like this:

1
2
3
5 - 1 - 2
    |   |
    4 - 3

Note: The size of the input 2D-array will be between 3 and 1000. Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array. Solution:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
class Solution {
    public int[] findRedundantConnection(int[][] edges) {
        
        if (edges.length < 3 || edges.length > 1000) {
            throw new RuntimeException();
        }
        int n = 0;
        for (int i = 0; i < edges.length; i++) {
            n = Math.max(n, edges[i][0]);
            n = Math.max(n, edges[i][1]);
        }
        
        
        for (int j = edges.length - 1; j >= 0; j--) {
            UF uf = new UF(n + 1);
            uf.union(0, 1); 
        
            for (int i = 0; i < edges.length; i++) {
                if (i != j) {
                   uf.union(edges[i][0], edges[i][1]); 
                }
            }
            
            if (uf.count() == 1) {
                return edges[j];
            }
        }
            
        return new int[0];     
    }
    
    class UF {
        private final int n;
        
        private final int[] a;
        private final int[] sz;
        
        public UF(int n) {
            this.n = n ;
            
            this.a = new int[n];
            this.sz = new int[n];
            
            for (int i = 0; i < n; i++) {
                this.a[i] = i;
                this.sz[i] = 1;
            }
        }
        
        void union(int p, int q) {
            int pid = find(p);
            int qid = find(q);
            
            if (sz[pid] >= sz[qid]) {
                a[qid] = pid;
                sz[qid] += sz[pid];
            } else {
                a[pid] = qid;   
                sz[pid] += sz[qid];
            }
        }
        
        int find(int p) {
            while (a[p] != p) {
                p = a[p];
            }
            return p;
        }
        
        int count() {
            int c = 0;
            
            for (int i = 0; i < n; i++) {
                if (a[i] == i) {
                    c++;
                }
            }
            return c;
        }
     }
}