![https://leetcode.com/problems/redundant-connection/]
In this problem, a tree is an undirected graph that is connected and has no cycles.
The given input is a graph that started as a tree with N nodes (with distinct values 1, 2, …, N), with one additional edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.
The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] with u < v, that represents an undirected edge connecting nodes u and v.
Return an edge that can be removed so that the resulting graph is a tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array. The answer edge [u, v] should be in the same format, with u < v.
Example 1:
Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given undirected graph will be like this:
Example 2:
Input: [[1,2], [2,3], [3,4], [1,4], [1,5]]
Output: [1,4]
Explanation: The given undirected graph will be like this:
1
2
3
| 5 - 1 - 2
| |
4 - 3
|
Note:
The size of the input 2D-array will be between 3 and 1000.
Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.
Solution:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
| class Solution {
public int[] findRedundantConnection(int[][] edges) {
if (edges.length < 3 || edges.length > 1000) {
throw new RuntimeException();
}
int n = 0;
for (int i = 0; i < edges.length; i++) {
n = Math.max(n, edges[i][0]);
n = Math.max(n, edges[i][1]);
}
for (int j = edges.length - 1; j >= 0; j--) {
UF uf = new UF(n + 1);
uf.union(0, 1);
for (int i = 0; i < edges.length; i++) {
if (i != j) {
uf.union(edges[i][0], edges[i][1]);
}
}
if (uf.count() == 1) {
return edges[j];
}
}
return new int[0];
}
class UF {
private final int n;
private final int[] a;
private final int[] sz;
public UF(int n) {
this.n = n ;
this.a = new int[n];
this.sz = new int[n];
for (int i = 0; i < n; i++) {
this.a[i] = i;
this.sz[i] = 1;
}
}
void union(int p, int q) {
int pid = find(p);
int qid = find(q);
if (sz[pid] >= sz[qid]) {
a[qid] = pid;
sz[qid] += sz[pid];
} else {
a[pid] = qid;
sz[pid] += sz[qid];
}
}
int find(int p) {
while (a[p] != p) {
p = a[p];
}
return p;
}
int count() {
int c = 0;
for (int i = 0; i < n; i++) {
if (a[i] == i) {
c++;
}
}
return c;
}
}
}
|