199. Binary Tree Right Side View
Given the root of a binary tree, imagine yourself standing on the right side of it, return the values of the nodes you can see ordered from top to bottom.
1
2
3
4
| Example 1:
Input: root = [1,2,3,null,5,null,4]
Output: [1,3,4]
|

1
2
3
4
| Example 2:
Input: root = [1,null,3]
Output: [1,3]
|
1
2
3
4
| Example 3:
Input: root = []
Output: []
|
Constraints:
- The number of nodes in the tree is in the range [0, 100].
- -100 <= Node.val <= 100
Recursive#

Iterative#

Solution#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
| /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
int head = 0;
int tail = 0;
TreeNode[] q = new TreeNode[101];
public List<Integer> rightSideView(TreeNode root) {
List<Integer> res = new ArrayList<>();
if (root == null) return Collections.emptyList();
add(root);
while (!isEmpty()) {
res.add(peek().val);
int n = size(); // remove prev level
for (int i = 0; i < n; i++) {
TreeNode node = poll();
if (node.right != null) add(node.right);
if (node.left != null) add(node.left);
}
}
return res;
}
boolean isEmpty() {
return tail == head;
}
int size() {
return tail - head;
}
TreeNode poll() {
if (!isEmpty()) {
return q[head++];
}
throw new RuntimeException();
}
void add(TreeNode a) {
q[tail] = a;
tail++;
}
TreeNode peek() {
return q[head];
}
public List<Integer> rightSideView2(TreeNode root) {
List<Integer> res = new ArrayList<>();
visit(root, res, 0);
return res;
}
void visit(TreeNode node, List<Integer> res, int depth) {
if (node == null) return;
if (res.size() == depth) {
res.add(depth, node.val);
}
visit(node.right, res, depth + 1);
visit(node.left, res, depth + 1);
}
}
|
Solution 15-06-2021#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
| /**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
public List<Integer> rightSideView(TreeNode root) {
List<Integer> levels = new ArrayList<>();
dfs(0, root, levels);
return levels;
}
void dfs(int level, TreeNode root, List<Integer> levels) {
if (root == null) {
return;
}
add(level, root.val, levels); // 2 5
dfs(level + 1, root.left, levels);
dfs(level + 1, root.right, levels);
}
// 0 1 2 3 4 -> 5
// []
void add(int level, int val, List<Integer> levels) {
// first element on level
if (levels.size() == level) {
levels.add(val);
return;
}
// remove previous, add new element
levels.remove(level);
levels.add(level, val);
}
}
|