1814. Count Nice Pairs in an Array
You are given an array nums that consists of non-negative integers. Let us define rev(x) as the reverse of the non-negative integer x. For example, rev(123) = 321, and rev(120) = 21. A pair of indices (i, j) is nice if it satisfies all of the following conditions:
- 0 <= i < j < nums.length
- nums[i] + rev(nums[j]) == nums[j] + rev(nums[i])
Return the number of nice pairs of indices. Since that number can be too large, return it modulo 109 + 7.
1
2
3
4
5
6
7
| Example 1:
Input: nums = [42,11,1,97]
Output: 2
Explanation: The two pairs are:
- (0,3) : 42 + rev(97) = 42 + 79 = 121, 97 + rev(42) = 97 + 24 = 121.
- (1,2) : 11 + rev(1) = 11 + 1 = 12, 1 + rev(11) = 1 + 11 = 12.
|
1
2
3
4
| Example 2:
Input: nums = [13,10,35,24,76]
Output: 4
|
Constraints:
- 1 <= nums.length <= 105
- 0 <= nums[i] <= 109
Solution#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
| class Solution {
int MODULO = 1_000_000_007;
public int countNicePairs(int[] nums) {
Map<Integer, Integer> diffsMap = new HashMap<>();
for (int i = 0; i < nums.length; i++) {
int rev = rev(nums[i]);
int diff = nums[i] - rev;
diffsMap.put(diff, diffsMap.getOrDefault(diff, 0) + 1);
}
long count = 0;
for (var e: diffsMap.entrySet()) {
long v = e.getValue();
if (v > 1) {
v = (v * (v - 1)) / 2;
count = (count + v) % MODULO;
}
}
return (int) count;
}
int rev(int x) {
int n = 0;
while (x > 0) {
int t = x % 10;
n = n * 10 + t;
x = x / 10;
}
return n;
}
}
|