64. Minimum Path Sum
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right, which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
1
2
3
4
5
| Example 1:
Input: grid = [[1,3,1],[1,5,1],[4,2,1]]
Output: 7
Explanation: Because the path 1 → 3 → 1 → 1 → 1 minimizes the sum.
|

1
2
3
4
| Example 2:
Input: grid = [[1,2,3],[4,5,6]]
Output: 12
|
Constraints:
- m == grid.length
- n == grid[i].length
- 1 <= m, n <= 200
- 0 <= grid[i][j] <= 100
Solution#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| class Solution {
public int minPathSum(int[][] grid) {
int n = grid.length;
int m = grid[0].length;
int[][] dp = new int[n][m];
dp[0][0] = grid[0][0];
for (int i = 0; i < n; i++) {
for (int j = 0; j < m; j++) {
if (i > 0 && j > 0) {
dp[i][j] = grid[i][j] + Math.min(dp[i-1][j],dp[i][j-1]);
} else if (i > 0) {
dp[i][j] = grid[i][j] + dp[i-1][j];
} else if (j > 0) {
dp[i][j] = grid[i][j] + dp[i][j-1];
}
}
}
return dp[n - 1][m - 1];
}
}
|