477. Total Hamming Distance
The Hamming distance between two integers is the number of positions at which the corresponding bits are different.
Given an integer array nums, return the sum of Hamming distances between all the pairs of the integers in nums.
1
2
3
4
5
6
7
8
9
10
11
12
13
| Example 1:
Input: nums = [4,14,2]
Output: 6
Explanation: In binary representation, the 4 is 0100, 14 is 1110, and 2 is 0010 (just
showing the four bits relevant in this case).
The answer will be:
HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6.
Example 2:
Input: nums = [4,14,4]
Output: 4
|
Constraints:
- 1 <= nums.length <= 105
- 0 <= nums[i] <= 109
Solution#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
| class Solution {
/*
0100
1110
0010
----
2220
*/
public int totalHammingDistance(int[] nums) {
int count = 0;
for (int k = 0; k < 32; k++) {
int zero = 0;
int nonZero = 0;
for (int i = 0; i < nums.length; i++) {
if ((nums[i] & (1 << k)) > 0) {
nonZero++;
} else {
zero++;
}
}
if (nums.length == zero || nums.length == nonZero) continue;
// System.out.println("k bit zero " + zero + " nonZero " + nonZero);
count += nonZero * zero;
}
return count;
}
}
|