338. Counting Bits
Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n), ans[i] is the number of 1’s in the binary representation of i.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| Example 1:
Input: n = 2
Output: [0,1,1]
Explanation:
0 --> 0
1 --> 1
2 --> 10
Example 2:
Input: n = 5
Output: [0,1,1,2,1,2]
Explanation:
0 --> 0
1 --> 1
2 --> 10
3 --> 11
4 --> 100
5 --> 101
|
Constraints:
Follow up:
- It is very easy to come up with a solution with a runtime of O(n log n). Can you do it in linear time O(n) and possibly in a single pass?
- Can you do it without using any built-in function (i.e., like __builtin_popcount in C++)?
Solution#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| class Solution {
public int[] countBits(int n) {
int[] bits = new int[n + 1];
for (int num = 0; num < bits.length; num++) {
int count = 0;
int i = 0;
while (i < 32) {
if ((num & (1 << i)) != 0) {
count++;
}
i++;
}
bits[num] = count;
}
return bits;
}
}
|