76. Minimum Window Substring
Given two strings s and t of lengths m and n respectively, return the minimum window substring of s such that every character in t (including duplicates) is included in the window. If there is no such substring, return the empty string “”.
The testcases will be generated such that the answer is unique.
A substring is a contiguous sequence of characters within the string.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
| Example 1:
Input: s = "ADOBECODEBANC", t = "ABC"
Output: "BANC"
Explanation: The minimum window substring "BANC" includes 'A', 'B', and 'C' from string t.
Example 2:
Input: s = "a", t = "a"
Output: "a"
Explanation: The entire string s is the minimum window.
Example 3:
Input: s = "a", t = "aa"
Output: ""
Explanation: Both 'a's from t must be included in the window.
Since the largest window of s only has one 'a', return empty string.
|
Constraints:
- m == s.length
- n == t.length
- 1 <= m, n <= 105
- s and t consist of uppercase and lowercase English letters.
Follow up: Could you find an algorithm that runs in O(m + n) time?
Solution#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
| class Solution {
public String minWindow(String s, String t) {
int[] freq = new int[128];
int counter = t.length();
for (char c : t.toCharArray()) {
freq[c]++;
}
int start = 0;
int end = 0;
int minStart = 0;
int minLength = Integer.MAX_VALUE;
while (end < s.length()) {
char c = s.charAt(end);
if (freq[c] > 0) {
counter--;
}
freq[c]--;
end++;
while (counter == 0) {
if (end - start < minLength) {
minStart = start;
minLength = end - start;
}
char startChar = s.charAt(start);
freq[startChar]++;
if (freq[startChar] > 0) {
counter++;
}
start++;
}
}
if (minLength == Integer.MAX_VALUE) {
return "";
}
return s.substring(minStart, minStart + minLength);
}
}
|