1175. Prime Arrangements
Return the number of permutations of 1 to n so that prime numbers are at prime indices (1-indexed.)
(Recall that an integer is prime if and only if it is greater than 1, and cannot be written as a product of two positive integers both smaller than it.)
Since the answer may be large, return the answer modulo 10^9 + 7.
1
2
3
4
5
6
7
8
9
10
| Example 1:
Input: n = 5
Output: 12
Explanation: For example [1,2,5,4,3] is a valid permutation, but [5,2,3,4,1] is not because the prime number 5 is at index 1.
Example 2:
Input: n = 100
Output: 682289015
|
Constraints:
Solution#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
| class Solution {
static long MOD = 1_000_000_007L;
public int numPrimeArrangements(int n) {
int count = 0;
for (int i = 2; i < n + 1; i++) {
if (i == 2 || i == 3 || isPrime(i)) {
count++;
}
}
long pn = factorial(count) % MOD;
long npn = factorial(n - count) % MOD;
return (int) (pn * npn % MOD);
}
boolean isPrime(int n) {
int m = (int) Math.sqrt(n) + 1;
for (int i = 2; i < m; i++) {
if (n % i == 0) return false;
}
return true;
}
long factorial(int n) {
long res = 1;
for (int i = 1; i < n + 1; i++) {
res = res * i;
res %= MOD;
}
return res;
}
}
|