315. Count of Smaller Numbers After Self
You are given an integer array nums and you have to return a new counts array. The counts array has the property where counts[i] is the number of smaller elements to the right of nums[i].
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
| Example 1:
Input: nums = [5,2,6,1]
Output: [2,1,1,0]
Explanation:
To the right of 5 there are 2 smaller elements (2 and 1).
To the right of 2 there is only 1 smaller element (1).
To the right of 6 there is 1 smaller element (1).
To the right of 1 there is 0 smaller element.
Example 2:
Input: nums = [-1]
Output: [0]
Example 3:
Input: nums = [-1,-1]
Output: [0,0]
|
Constraints:
- 1 <= nums.length <= 10^5
- -10^4 <= nums[i] <= 10^4
Solution#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
| class Solution {
/*
-1 -1 5 2 1
0 1 2 3 4 5
.. 0...2 0 1 1 0 0 1
*/
public List<Integer> countSmaller(int[] nums) {
int offset = 10_000;
int size = 2 * 10_000 + 1;
int[] tree = new int[size * 2];
List<Integer> res = new ArrayList<>();
for (int i = nums.length - 1; i >= 0; i--) {
int smallerCount = query(0, nums[i] + offset, tree, size);
res.add(0, smallerCount);
update(nums[i] + offset, 1, tree, size);
}
return res;
}
void update(int index, int value, int[] tree, int size) {
index += size;
tree[index] += value;
while (index > 1) {
index /= 2;
tree[index] = tree[index * 2] + tree[index * 2 + 1];
}
}
int query(int left, int right, int[] tree, int size) {
int result = 0;
left += size;
right += size;
while (left < right) {
if (left % 2 == 1) {
result += tree[left];
left++;
}
if (right % 2 == 1) {
right--;
result += tree[right];
}
left /= 2;
right /= 2;
}
return result;
}
}
|