
Given an array nums of integers, return the length of the longest arithmetic subsequence in nums.
Recall that a subsequence of an array nums is a list nums[i1], nums[i2], …, nums[ik] with 0 <= i1 < i2 < … < ik <= nums.length - 1, and that a sequence seq is arithmetic if seq[i+1] - seq[i] are all the same value (for 0 <= i < seq.length - 1).
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
| Example 1:
Input: nums = [3,6,9,12]
Output: 4
Explanation:
The whole array is an arithmetic sequence with steps of length = 3.
Example 2:
Input: nums = [9,4,7,2,10]
Output: 3
Explanation:
The longest arithmetic subsequence is [4,7,10].
Example 3:
Input: nums = [20,1,15,3,10,5,8]
Output: 4
Explanation:
The longest arithmetic subsequence is [20,15,10,5].
|
Constraints:
- 2 <= nums.length <= 1000
- 0 <= nums[i] <= 500
Solution#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
| class Solution {
/*
12 - 9
12 - 6
12 - 3
9 - 6
9 - 3
6 - 3
0:
9 - 1
3 - 4
1:
6 - 3
3 - 3
2:
3 - 2
6 - 2
3:
3 - 1
6 - 1
9 - 1
*/
public int longestArithSeqLength(int[] nums) {
Map<Integer, Integer>[] maps = new HashMap[nums.length];
for (int i = 0; i < nums.length; i++) {
maps[i] = new HashMap<Integer, Integer>();
}
int max = 0;
for (int j = nums.length - 1; j >= 0; j--) {
for (int i = j - 1; i >= 0; i--) {
int diff = nums[j] - nums[i];
maps[i].put(diff, maps[j].getOrDefault(diff, 1) + 1);
max = Math.max(max, maps[i].get(diff));
}
}
return max;
}
}
|