
A transformation sequence from word beginWord to word endWord using a dictionary wordList is a sequence of words beginWord -> s1 -> s2 -> … -> sk such that:
- Every adjacent pair of words differs by a single letter.
- Every si for 1 <= i <= k is in wordList. Note that beginWord does not need to be in wordList.
- sk == endWord
Given two words, beginWord and endWord, and a dictionary wordList, return all the shortest transformation sequences from beginWord to endWord, or an empty list if no such sequence exists. Each sequence should be returned as a list of the words [beginWord, s1, s2, …, sk].
1
2
3
4
5
6
7
8
9
10
11
12
13
| Example 1:
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log","cog"]
Output: [["hit","hot","dot","dog","cog"],["hit","hot","lot","log","cog"]]
Explanation: There are 2 shortest transformation sequences:
"hit" -> "hot" -> "dot" -> "dog" -> "cog"
"hit" -> "hot" -> "lot" -> "log" -> "cog"
Example 2:
Input: beginWord = "hit", endWord = "cog", wordList = ["hot","dot","dog","lot","log"]
Output: []
Explanation: The endWord "cog" is not in wordList, therefore there is no valid transformation sequence.
|
Constraints:
- 1 <= beginWord.length <= 5
- endWord.length == beginWord.length
- 1 <= wordList.length <= 1000
- wordList[i].length == beginWord.length
- beginWord, endWord, and wordList[i] consist of lowercase English letters.
- beginWord != endWord
- All the words in wordList are unique.
Solution#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
| class Solution {
public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
wordList.add(0, beginWord);
List<List<Integer>> g = buildGraph(wordList);
List<List<String>> res = new ArrayList<>();
int min = Integer.MAX_VALUE;
int target = wordList.indexOf(endWord);
int source = wordList.indexOf(beginWord);
Queue<Pair> q = new ArrayDeque<>();
q.add(new Pair<Integer, List<String>>(source, new ArrayList<>()));
int[] visited = new int[wordList.size()];
while (q.size() > 0) {
int size = q.size();
for (int i = 0; i < size; i++) {
Pair<Integer, List<String>> node = q.poll();
Integer index = node.getKey();
visited[index] = 1;
String word = wordList.get(index);
List<String> path = node.getValue();
path.add(word);
if (path.size() > min) continue;
if (index == target) {
if (path.size() < min) {
min = path.size();
res.clear();
res.add(path);
} else if (path.size() == min) {
res.add(path);
}
} else {
for (Integer nei: g.get(index)) {
String neiWord = wordList.get(nei);
if (visited[nei] == 0) {
q.add(new Pair<>(nei, new ArrayList<>(path)));
}
}
}
}
}
return res;
}
boolean intersects(String a, String b) {
int i = 0;
int count = 0;
while (i < a.length()) {
if (a.charAt(i) != b.charAt(i)) {
count++;
}
if (count > 1) {
return false;
}
i++;
}
return count == 1;
}
List<List<Integer>> buildGraph(List<String> wordList) {
int n = wordList.size();
List<List<Integer>> g = new ArrayList<>();
for (int i = 0; i < n; i++) {
g.add(new ArrayList<>());
}
for (int i = 0; i < n; i++) {
for (int j = i + 1; j < n; j++) {
if (intersects(wordList.get(i), wordList.get(j))) {
g.get(i).add(j);
g.get(j).add(i);
}
}
}
return g;
}
}
|