You have a pointer at index 0 in an array of size arrLen. At each step, you can move 1 position to the left, 1 position to the right in the array, or stay in the same place (The pointer should not be placed outside the array at any time).
Given two integers steps and arrLen, return the number of ways such that your pointer still at index 0 after exactly steps steps. Since the answer may be too large, return it modulo 109 + 7.
Example 1:
Input: steps = 3, arrLen = 2
Output: 4
Explanation: There are 4 differents ways to stay at index 0 after 3 steps.
Right, Left, Stay
Stay, Right, Left
Right, Stay, Left
Stay, Stay, Stay
Example 2:
Input: steps = 2, arrLen = 4
Output: 2
Explanation: There are 2 differents ways to stay at index 0 after 2 steps
Right, Left
Stay, Stay
Example 3:
Input: steps = 4, arrLen = 2
Output: 8
Constraints:
- 1 <= steps <= 500
- 1 <= arrLen <= 10^6
Solution
class Solution {
public int numWays(int steps, int arrLen) {
int maxPos = Math.min(arrLen, steps);
long[][] dp = new long[steps + 1][maxPos + 1];
dp[1][0]=1;
if(arrLen > 1) dp[1][1]=1;
for (int step = 2; step <= steps; step++) {
for (int pos = 0; pos < maxPos; pos++) {
// STAY + RIGHT + LEFT
dp[step][pos] = (dp[step - 1][pos] + dp[step - 1][pos + 1] + (pos > 0 ? dp[step - 1][pos - 1]: 0)) % 1_000_000_007L;
}
}
// for (int step = 0; step < steps; step++) {
// System.out.println(Arrays.toString(dp[step]));
// }
return (int) dp[steps][0];
}
// TLE
int count = 0;
public int numWays2(int steps, int arrLen) {
backtrack(steps, 0, 0, 0, arrLen);
return count;
}
void backtrack(int steps, int pos, int opened, int closed, int arrLen) {
if (pos < 0 || pos == arrLen) {
return;
}
if (opened < closed) {
return;
}
if (steps == 0) {
if (pos == 0) {
count = count + 1;
count = count % 1_000_000_007;
}
return;
}
// right
backtrack(steps - 1, pos + 1, opened + 1, closed, arrLen);
// stay
backtrack(steps - 1, pos, opened, closed, arrLen);
// left
backtrack(steps - 1, pos - 1, opened, closed - 1, arrLen);
}
}