319. Bulb Switcher

319. Bulb Switcher There are n bulbs that are initially off. You first turn on all the bulbs, then you turn off every second bulb. On the third round, you toggle every third bulb (turning on if it’s off or turning off if it’s on). For the ith round, you toggle every i bulb. For the nth round, you only toggle the last bulb. Return the number of bulbs that are on after n rounds. ...

September 1, 2021 · 1 min · volyx

191. Number of 1 Bits

191. Number of 1 Bits Write a function that takes an unsigned integer and returns the number of ‘1’ bits it has (also known as the Hamming weight). Note: Note that in some languages, such as Java, there is no unsigned integer type. In this case, the input will be given as a signed integer type. It should not affect your implementation, as the integer’s internal binary representation is the same, whether it is signed or unsigned. In Java, the compiler represents the signed integers using 2’s complement notation. Therefore, in Example 3, the input represents the signed integer. -3. Example 1: Input: n = 00000000000000000000000000001011 Output: 3 Explanation: The input binary string 00000000000000000000000000001011 has a total of three '1' bits. Example 2: Input: n = 00000000000000000000000010000000 Output: 1 Explanation: The input binary string 00000000000000000000000010000000 has a total of one '1' bit. Example 3: Input: n = 11111111111111111111111111111101 Output: 31 Explanation: The input binary string 11111111111111111111111111111101 has a total of thirty one '1' bits. Constraints: ...

June 7, 2021 · 2 min · volyx

231. Power of Two

231. Power of Two Given an integer n, return true if it is a power of two. Otherwise, return false. An integer n is a power of two, if there exists an integer x such that n == 2x. Example 1: Input: n = 1 Output: true Explanation: 20 = 1 Example 2: Input: n = 16 Output: true Explanation: 24 = 16 Example 3: Input: n = 3 Output: false Example 4: Input: n = 4 Output: true Example 5: Input: n = 5 Output: false Constraints: ...

June 7, 2021 · 1 min · volyx

477. Total Hamming Distance

477. Total Hamming Distance The Hamming distance between two integers is the number of positions at which the corresponding bits are different. Given an integer array nums, return the sum of Hamming distances between all the pairs of the integers in nums. Example 1: Input: nums = [4,14,2] Output: 6 Explanation: In binary representation, the 4 is 0100, 14 is 1110, and 2 is 0010 (just showing the four bits relevant in this case). The answer will be: HammingDistance(4, 14) + HammingDistance(4, 2) + HammingDistance(14, 2) = 2 + 2 + 2 = 6. Example 2: Input: nums = [4,14,4] Output: 4 Constraints: ...

May 22, 2021 · 1 min · volyx